Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(1)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267222

RESUMO

BACKGROUND: Targeted immunotherapy with monoclonal antibodies (mAbs) is an effective and safe method for the treatment of malignancies. Development of mAbs with improved cytotoxicity, targeting new and known tumor-associated antigens, therefore continues to be an active research area. We reported that Dickkopf-1 (DKK1) is a good target for immunotherapy of human cancers based on its wide expression in different cancers but not in normal tissues. As DKK1 is a secreted protein, mAbs binding directly to DKK1 have limited effects on cancer cells in vivo. METHODS: The specificity and antibody-binding capacity of DKK1-A2 mAbs were determined using indirect ELISA, confocal imaging, QIFIKIT antibody-binding capacity and cell surface binding assays. The affinity of mAbs was determined using a surface plasmon resonance biosensor. A flow cytometry-based cell death was performed to detect tumor cell apoptosis. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays were used to evaluate the ability of DKK1-A2 mAbs to mediate ADCC and CDC activities against tumor cells in vitro. Flow cytometry data were collected with an FACSymphony A3 cell analyzer and analyzed with FlowJo V.10.1 software. Human cancer xenograft mouse models were used to determine the in vivo therapeutic efficacy and the potential safety and toxicity of DKK1-A2 mAbs. In situ TUNEL assay was performed to detect apoptosis in tumors and mouse organs. RESULTS: We generated novel DKK1-A2 mAbs that recognize the DKK1 P20 peptide presented by human HLA-A*0201 (HLA-A2) molecules (DKK1-A2 complexes) that are naturally expressed by HLA-A2+DKK1+ cancer cells. These mAbs directly induced apoptosis in HLA-A2+DKK1+ hematologic and solid cancer cells by activating the caspase-9 cascade, effectively lysed the cancer cells in vitro by mediating CDC and ADCC and were therapeutic against established cancers in their xenograft mouse models. As DKK1 is not detected in most human tissues, DKK1-A2 mAbs neither bound to or killed HLA-A2+ blood cells in vitro nor caused tissue damage in tumor-free or tumor-bearing HLA-A2-transgenic mice. CONCLUSION: Our study suggests that DKK1-A2 mAbs may be a promising therapeutic agent to treat human cancers.


Assuntos
Antígeno HLA-A2 , Neoplasias , Humanos , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Peptídeos , Imunoterapia , Neoplasias/tratamento farmacológico , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular
2.
J Multidiscip Healthc ; 16: 3585-3597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024121

RESUMO

Background: This study aims to investigate how a team can be resilient in the face of crisis and adversity. Methods: This empirical study adopted a quantitative research method. The data were collected by questionnaire survey, and the stats analysis package in R language and AMOS 23 were used for empirical analysis of 98 teams. Based on complex adaptive system theory and conservation of resources theory, this study was constructed the theoretical framework of "environmental influence - team exchange - team resilience" with informational team faultline (ITF) as independent variable, team leader member exchange (TLMX) and team member exchange (TMX) as mediating and moderating variables, and team resilience as dependent variable in the context of Chinese culture. Results: We found that the ITF had a significant negative effect on the team resilience. TLMX and TMX played partial mediating role between ITF and team resilience. In addition, TLMX and TMX played moderating role between ITF and team resilience, that is, weakening the negative influence of ITF on team resilience. Conclusion: This study contributes to clarify the mechanism of the influence of ITF on team resilience, and provide reference for team leaders to improve team resilience in the face of adversity.

3.
Int J Gen Med ; 16: 2175-2185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287502

RESUMO

Objective: This study aims at assessing the potential benefits of observation of monocyte-to-albumin ratio (MAR) and neutrophil percentage-to-hemoglobin ratio (NPHR) in the detection of non-small cell lung cancer (NSCLC). Methods: This study retrospectively involved 195 NSCLC patients and 204 healthy volunteers. The correlations between the clinicopathological characteristics of NSCLC and the two ratios including MAR and NPHR were assessed. The diagnostic efficiency of NSCLC patients by MAR and NPHR, alone or in combination with carcinoembryonic antigen (CEA), was assessed by receiver operating characteristic (ROC) curve. The risk factors for NSCLC were analyzed with binary logistic regression. Results: Compared to healthy controls, the levels of MAR and NPHR in NSCLC patients were elevated. MAR and NPHR were related to clinicopathologic characteristics and increased significantly along with the progression of NSCLC. The area under the curve (AUC) for 95% confidence interval (95% CI) of MAR and NPHR in the diagnosis of NSCLC was 0.812 (0.769-0.854) and 0.724 (0.675-0.774), respectively. The combination of MAR, NPHR, and CEA achieved the highest diagnostic utility compared to each individually or combined markers (AUC, 0.86; 95% CI, 0.824-0.896; sensitivity, 72.8%; specificity, 87.3%). Further analysis showed that MAR combined with NPHR presented the potential to detect early-stage (IA-IIB) NSCLC (AUC, 0.794; 95% CI, 0.743-0.845; sensitivity, 55.1%; specificity, 87.7%). The result indicated that MAR and NPHR might be risk factors for NSCLC. Conclusion: MAR and NPHR could be novel and effective auxiliary indexes in the detection of NSCLC, especially when combined with CEA.

4.
Oncol Lett ; 25(4): 135, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36909371

RESUMO

The present study aimed to evaluate the potential of the monocyte to red blood cell count ratio (MRR), the neutrophil to red blood cell count ratio (NRR), the lymphocyte to red blood cell count ratio (LRR) and the product of lymphocyte count and albumin concentration (LA) for the diagnosis of lung cancer. The cases of 216 patients with newly diagnosed lung cancer and 184 healthy volunteers were retrospectively analysed. The MRR and NRR were found to be higher in patients with lung cancer compared with those in healthy controls, while the LRR and LA were lower. The receiver operating characteristic curve analysis revealed that of the four markers, the MRR and LA yielded a higher area under the curve (AUC) (MRR: AUC, 0.810; 95% CI, 0.768-0.847; and LA: AUC, 0.721; 95% CI, 0.674-0.764). The combination of MRR, LA, carcinoembryonic antigen (CEA) and cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) achieved the highest diagnostic value when compared with other single or combined markers (AUC, 0.882; 95% CI, 0.846-0.912; sensitivity, 81.9%; specificity, 81.0%). As the disease progressed, the MRR tended to increase, while LA exhibited a decreasing trend. Binary logistic regression analysis revealed an increase in the MRR, as well as in CEA and CYFRA21-1 concentrations, and a decrease in the LA, which could all be possible risk factors for lung cancer. Differences in the MRR and LA between patients with early stage (IA-IIIA) lung cancer and healthy controls were observed. Further analysis revealed that the MRR also exhibited the potential to detect early stage (IA-IIIA) lung cancer in the model. The present findings demonstrated that the MRR and LA may be used as auxiliary biomarkers for the diagnosis of lung cancer and could partly indicate disease progression.

5.
Exp Hematol Oncol ; 12(1): 34, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998063

RESUMO

Tumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.

6.
Front Immunol ; 14: 1322746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259464

RESUMO

Growing evidence indicates that cellular metabolism is a critical determinant of immune cell viability and function in antitumor immunity and lipid metabolism is important for immune cell activation and adaptation to the tumor microenvironment (TME). Lipid peroxidation is a process in which oxidants attack lipid-containing carbon-carbon double bonds and is an important part of lipid metabolism. In the past decades, studies have shown that lipid peroxidation participates in signal transduction to control cell proliferation, differentiation, and cell death, which is essential for cell function execution and human health. More importantly, recent studies have shown that lipid peroxidation affects immune cell function to modulate tumor immunity and antitumor ability. In this review, we briefly overview the effect of lipid peroxidation on the adaptive and innate immune cell activation and function in TME and discuss the effectiveness and sensitivity of the antitumor ability of immune cells by regulating lipid peroxidation.


Assuntos
Neoplasias , Humanos , Peroxidação de Lipídeos , Morte Celular , Diferenciação Celular , Carbono , Microambiente Tumoral
7.
J Hematol Oncol ; 15(1): 55, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526043

RESUMO

Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that regulates cell proliferation, survival, and migration. However, its role on human multiple myeloma (MM) cells is largely unknown. In this study, we show that LPA, which is highly elevated in MM patients, plays an important role in protecting human MM cells against proteasome inhibitor (PI)-induced apoptosis. LPA bound to its receptor LPAR2 activated its downstream MEK1/2-ERK1/2 signaling pathway and enhanced oxidative phosphorylation (OXPHOS) in mitochondria in MM cells. Increased OXPHOS activity produced more NAD+ and ATP, reduced proteasome activity, and enhanced protein folding and refolding in endoplasmic reticulum (ER), leading to induction of MM resistance to PIs. Importantly, inhibiting LPAR2 activity or knocking out LPAR2 in MM cells significantly enhanced MM sensitivity to PI-induced apoptosis in vitro and in vivo. Interestingly, primary MM cells from LPA-high patients were more resistant to PI-induced apoptosis than MM cells from LPA-low patients. Thus, our study indicates that LPA-LPAR2-mediated signaling pathways play an important role in MM sensitivity to PIs and targeting LPA or LPAR2 may potentially be used to (re)sensitize patients to PI-based therapy.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Apoptose , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
8.
Biomed Pharmacother ; 149: 112882, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364375

RESUMO

Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.


Assuntos
Carcinogênese , Proteínas Culina , Proteínas Nucleares , Proteínas Repressoras , Ubiquitina-Proteína Ligases , Carcinogênese/metabolismo , Transformação Celular Neoplásica , Proteínas Culina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192544

RESUMO

CD8+ T cell longevity regulated by metabolic activity plays important roles in cancer immunotherapy. Although in vitro-polarized, transferred IL-9-secreting CD8+ Tc9 (cytotoxic T lymphocyte subset 9) cells exert greater persistence and antitumor efficacy than Tc1 cells, the underlying mechanism remains unclear. Here, we show that tumor-infiltrating Tc9 cells display significantly lower lipid peroxidation than Tc1 cells in several mouse models, which is strongly correlated with their persistence. Using RNA-sequence and functional validation, we found that Tc9 cells exhibited unique lipid metabolic programs. Tc9 cell-derived IL-9 activated STAT3, upregulated fatty acid oxidation and mitochondrial activity, and rendered Tc9 cells with reduced lipid peroxidation and resistance to tumor- or ROS-induced ferroptosis in the tumor microenvironment. IL-9 signaling deficiency, inhibiting STAT3, or fatty acid oxidation increased lipid peroxidation and ferroptosis of Tc9 cells, resulting in impaired longevity and antitumor ability. Similarly, human Tc9 cells also exhibited lower lipid peroxidation than Tc1 cells and tumor-infiltrating CD8+ T cells expressed lower IL9 and higher lipid peroxidation- and ferroptosis-related genes than circulating CD8+ T cells in patients with melanoma. This study indicates that lipid peroxidation regulates Tc9 cell longevity and antitumor effects via the IL-9/STAT3/fatty acid oxidation pathway and regulating T cell lipid peroxidation can be used to enhance T cell-based immunotherapy in human cancer.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-9 , Animais , Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Imunoterapia/métodos , Interleucina-9/genética , Peroxidação de Lipídeos , Camundongos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
10.
Blood ; 139(1): 59-72, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411225

RESUMO

Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-ß response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.


Assuntos
Antineoplásicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptores do Ácido Retinoico/agonistas , 2',5'-Oligoadenilato Sintetase/imunologia , Linhagem Celular Tumoral , Endorribonucleases/imunologia , Humanos , Receptores do Ácido Retinoico/imunologia , Células Tumorais Cultivadas
11.
Cancer Cell Int ; 21(1): 641, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857003

RESUMO

BACKGROUND: Heterogeneous nuclear ribonucleoprotein K (HnRNPK) is a nucleic acid-binding protein that regulates diverse biological events. Pathologically, HnRNPK proteins are frequently overexpressed and clinically correlated with poor prognosis in various types of human cancers and are therefore pursued as attractive therapeutic targets for select patients. However, both the transcriptional regulation and degradation of HnRNPK in prostate cancer remain poorly understood. METHODS: qRT-PCR was used to detect the expression of HnRNPK mRNA and miRNA; Immunoblots and immunohistochemical assays were used to determine the levels of HnRNPK and other proteins. Flow cytometry was used to investigate cell cycle stage. MTS and clonogenic assays were used to investigate cell proliferation. Immunoprecipitation was used to analyse the interaction between SPOP and HnRNPK. A prostate carcinoma xenograft mouse model was used to detect the in vivo effects of HnRNPK and miRNA. RESULTS: In the present study, we noted that HnRNPK emerged as an important player in the carcinogenesis process of prostate cancer. miR-206 and miR-613 suppressed HnRNPK expression by targeting its 3'-UTR in PrCa cell lines in which HnRNPK is overexpressed. To explore the potential biological function, proliferation and colony formation of PrCa cells in vitro and tumor growth in vivo were also dramatically suppressed upon reintroduction of miR-206/miR-613. We have further provided evidence that Cullin 3 SPOP is a novel upstream E3 ubiquitin ligase complex that governs HnRNPK protein stability and oncogenic functions by promoting the degradation of HnRNPK in polyubiquitination-dependent proteolysis in the prostate cancer setting. Moreover, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of HnRNPK proteins. CONCLUSION: Our findings reveal new posttranscriptional and posttranslational modification mechanisms of HnRNPK regulation via miR-206/miR-613 and SPOP, respectively. More importantly, given the critical oncogenic role of HnRNPK and the high frequency of SPOP mutations in prostate cancer, our results provide a molecular rationale for the clinical investigation of novel strategies to combat prostate cancer based on SPOP genetic status.

12.
Sci Prog ; 103(4): 36850420969577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33225844

RESUMO

Casing wear is a serious problem in highly-deviated wells because serious wear will lead to casing deformation, drilling tool sticking and failure of subsequent operations. The purpose of this paper is to predict casing wear depth and evaluate its effect on casing strength degradation in highly-deviated well drilling operation. Special attention has been given to the algorithm to achieve the prediction and evaluation. The effect of tool joint on contact force distribution is considered in contact force model. Then a wear depth prediction model and its solution method are proposed based on crescent-shaped wear morphology and wear-efficiency model. Besides, strength degradation of worn casing is analyzed in bipolar coordinate system and the model is verified by finite element method. Therefore, the technology of casing wear prediction and residual strength evaluation is completed systematically. Then, to apply casing wear prediction and residual strength evaluation technologies to an actual highly-deviated well, casing wear experiment and friction coefficient experiment are carried out to obtain wear coefficient and friction coefficient. Finally, based on the established models as well as experimental results, the distribution of casing wear is predicted and residual strength is evaluated. The method presented in this paper will contribute greatly to casing wear prediction and evaluation in highly-deviated wells.

13.
Blood ; 136(22): 2557-2573, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32582913

RESUMO

Multiple myeloma (MM) remains largely incurable despite significant advances in biotherapy and chemotherapy. The development of drug resistance is a major problem in MM management. Macrophage migration inhibitory factor (MIF) expression was significantly higher in purified MM cells from relapsed patients than those with sustained response, and MM patients with high MIF had significantly shorter progression-free survival (PFS) and overall survival (OS). MM cell lines also express high levels of MIF, and knocking out MIF made them more sensitive to proteasome inhibitor (PI)-induced apoptosis not observed with other chemotherapy drugs. Mechanistic studies showed that MIF protects MM cells from PI-induced apoptosis by maintaining mitochondrial function via suppression of superoxide production in response to PIs. Specifically, MIF, in the form of a homotrimer, acts as a chaperone for superoxide dismutase 1 (SOD1) to suppress PI-induced SOD1 misfolding and to maintain SOD1 activity. MIF inhibitor 4-iodo-6-phenylpyrimidine and homotrimer disrupter ebselen, which do not kill MM cells, enhanced PI-induced SOD1 misfolding and loss of function, resulting in significantly more cell death in both cell lines and primary MM cells. More importantly, inhibiting MIF activity in vivo displayed synergistic antitumor activity with PIs and resensitized PI-resistant MM cells to treatment. In support of these findings, gene-profiling data showed a significantly negative correlation between MIF and SOD1 expression and response to PI treatment in patients with MM. This study shows that MIF plays a crucial role in MM sensitivity to PIs and suggests that targeting MIF may be a promising strategy to (re)sensitize MM to the treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Mieloma Múltiplo , Proteínas de Neoplasias/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-792981

RESUMO

OBJECTIVE@#To analyze the effectiveness and safety of one stage three column osteotomy in treatment of scoliosis with split spinal cord malformation.@*METHODS@#The clinical data of 41 patients with scoliosis and split spinal cord malformation underwent one-stage three-column osteotomy from January 2015 to December 2017 were retrospectively analyzed. There were 17 males and 24 females with average age of (25.14±4.51) years old and the average weight of (65.14±9.11) kg. According to the classification of longitudinal spina bifida, 15 cases of Pang typeⅠwere group A and 26 cases of Pang typeⅡwere group B. The general situations of two groups were recorded ; preoperative and postoperative Cobb angle were observed and the correction rate of Cobb angle of coronal plane was calculated ; the coronal and sagittal torso offset distances were compared between two groups and the trunk balance was evaluated ; the complication of two groups was recorded.@*RESULTS@#All 41 patients were followed up for more than 12 months. The operation time, intraoperative blood loss, and perioperative blood transfusion volume in group A were (610.14±115.02) min, (4 001.12±1 014.33) ml, (3 951.14±1 021.55) ml, respectively, and group B were (520.12±101.14) min, (2 701.57±1 021.45) ml, (2 565.77±880.47) ml, the difference between the two groups was statistically significant (0.05). There was no significant difference in postoperative coronary Cobb angle and correction rate between two groups (>0.05). Immediately after surgery and 12 months after surgery, there was no significant difference in the trunk displacement distance of coronal view and sagittal view between two groups (>0.05). Six patients in group A had complications, which was higher than that in group B of 1 case (=4.885, < 0.05).@*CONCLUSION@#One-stage three-column osteotomy in treatment of scoliosis with split spinal cord malformation has high correction rate and good balance of the trunk. However, for patients with typeⅠsplit spinal cord malformation, they will face longer operation time, more intraoperative bleeding volume, large amount of perioperative blood transfusion and higher risk of complications, and the safety is not as good as that of typeⅡpatients. Therefore, in the actual treatment of scoliosis, especially for those with typeⅠsplit spinal cord malformation, a more reasonable surgical plan should be developed in combination with the actual situations of the patients, so as to improve the safety of the operation.

16.
Opt Express ; 27(24): 35971-35980, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878761

RESUMO

Quantum state transfer plays an important role in quantum information processing, and it has been obtained many of the theoretical and experimental triumphs. But designing a dissipation-assisted scheme to transfer a quantum state is still by no means trivial. Here we put forward an easier scheme to dissipatively transfer an arbitrary quantum state from a sender to a receiver with two four-level atoms and three lasers in a lossy coupled-cavity array, and make the quantum state stable at the receiver via the photon loss of optical cavities. Owing to the assistance of the dissipation, the target state becomes the steady state of the whole process. Thus there is no requirement on external time-dependent controls. Furthermore, the atomic spontaneous emission can be significantly suppressed as the adiabatic elimination of the excited states. We also discuss the experimental feasibility of this scheme with the current experimental technologies and a high fidelity of the transferred state in the receiver can be above 98%.

17.
PLoS Negl Trop Dis ; 13(5): e0007434, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31136581

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that is caused by a novel bunyavirus SFTSV. Currently our knowledge of the host-related factors that influence the pathogenesis of disease is inadequate to allow prediction of fatal outcome. Here we conducted a prospective study of the largest database on the SFTS patients, to identify the presence of comorbidities in SFTS, and estimate their effect on the fatal outcome. Among 2096 patients eligible for inclusion, we identified nine kinds of comorbidities, from which hyperlipidemia (12.2%; 95% CI: 10.8%-13.6%), hypertension (11.0%; 95% CI: 9.6%-12.3%), chronic viral hepatitis (CVH) (9.3%; 95% CI: 8.1%-10.5%), and diabetes mellitus (DM) (6.8%; 95% CI: 5.7%-7.9%) were prevalent. Higher risk of death was found in patients with DM (adjusted OR = 2.304; 95% CI: 1.520-3.492; P<0.001), CVH (adjusted OR = 1.551; 95% CI: 1.053-2.285; P = 0.026) and chronic obstructive pulmonary diseases (COPD) (adjusted OR = 2.170; 95% CI: 1.215-3.872; P = 0.009) after adjusting for age, sex, delay from disease onset to admission and treatment regimens. When analyzing the comorbidities separately, we found that the high serum glucose could augment diseases severity. Compared to the group with max glucose < 7.0 mmol/L, patients with glucose between 7.0-11.1 mmol/L and glucose ≥11.1 mmol/L conferred higher death risk, with the adjusted OR to be 1.467 (95% CI: 1.081-1.989; P = 0.014) and 3.443 (95% CI: 2.427-4.884; P<0.001). Insulin therapy could effectively reduce the risk of severe outcome in DM patients with the adjusted OR 0.146 (95% CI: 0.058-0.365; P<0.001). For CVH patients, severe damage of liver and prolongation of blood coagulation time, as well as high prevalence of bleeding phenotype were observed. These data supported the provocative hypothesis that treating SFTS related complications can attain potentially beneficial effects on SFTS.


Assuntos
Febre por Flebótomos/mortalidade , Phlebovirus/fisiologia , Adulto , Idoso , Doença Crônica/mortalidade , Comorbidade , Humanos , Pessoa de Meia-Idade , Febre por Flebótomos/virologia , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Cobertura de Condição Pré-Existente , Estudos Prospectivos
19.
Catheter Cardiovasc Interv ; 93(1): E38-E45, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30196545

RESUMO

OBJECTIVE: To evaluate the safety and feasibility of a modified poly(l-lactic acid) (PLLA) atrial septal defect (ASD) occluder. METHODS: Forty-five piglets were divided into two groups: an experimental group (n = 27) and a control group (n = 18). The experimental group underwent percutaneous implantation of a modified PLLA ASD device while the control group underwent percutaneous implantation of a widely used metal ASD device. X-ray imaging, transthoracic echocardiography (TTE), electrocardiogram (ECG), histopathology and electron microscopic examination were performed at 7 days, 1, 3, 6, and 12 months after implantation. RESULTS: Twenty-seven experimental piglets and 18 control piglets were all successfully implanted with modified biodegradable and metal ASD devices, respectively. While both devices exhibited very good occluding effects, the modified PLLA ASD devices were completely endothelialized at 3 months after implantation, and the endothelialization appeared to be more complete compared to the control group. Degradation of the PLLA devices was noted at 12 months follow-up with no loss of integrity at the atrial septum. CONCLUSION: This animal model with implanting of the occluders was effective and not associated with complications. The modified PLLA ASD devices are more controllable and practical than our previous devices. The implanted devices demonstrated good endothelialization and degradability in short and moderate term follow-up. Long-term studies are now underway to further evaluate the biodegradability of this novel device.


Assuntos
Implantes Absorvíveis , Septo Interatrial , Cateterismo Cardíaco/instrumentação , Poliésteres/química , Dispositivo para Oclusão Septal , Ligas/química , Animais , Animais Recém-Nascidos , Septo Interatrial/diagnóstico por imagem , Septo Interatrial/ultraestrutura , Teste de Materiais , Modelos Animais , Desenho de Prótese , Sus scrofa , Fatores de Tempo
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-843763

RESUMO

SUMOylation is a dynamically reversible process that needs to be modified by a specific ligase, while its inverse reaction deSUMOylation is catalyzed by a group of SUMO-specific proteases (SENPs). SUMO-modified target protein molecules are closely related to development and disease, especially tumor, metabolism, inflammation and immunity. SENPs play an important role in SUMO protein maturation and deSUMOylation. This review discussed the functions of SENPs in the development and progression of tumors and related mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...